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I. Introduction

Relational programming is a method of programming based on the

use of a relational calculus. We begin by explaining why we have

chosen to investigate relational programming.

We began investigating relations to try to a find a high

level way of manipulating complex data structures. Languages

such as APL are very successful in the manipulation of vectors

and matrices, and languages such as Snobol are useful in the

manipulation of strings. Unfortunately, these are both examples

of linear data structures, and many problems in computer science

reauire non-linear data structures, such as trees and networks.

Proposed extensions to APL and Snobol to handle non-linear data

structures have not been very successful.

Tt is well known that almost any data structure can be

lescribed by a relation. In effect, then, any operation on rela-

tions can be thought of as an operation on data structures.

Ther fore, it seemed that the high level relational operators

' ho work reoorted herein was supported by the Foundation
Research Program of the Maval Postgraduate School with funds
nrovieied hv the Chief of Faval Research.
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vrovided by a relational calculus might provide a source of high

level operations for manipulating non-linear data structures.

This has proved to be the case.

Backus [13 has described the advantages of programming with

functionals, that is, with functions which operate on other func-

tions. Functionals allow the high level combination of programs

to yield new programs. Now notice, since every function is a

relation, every relational operator is in effect a functional.

Therefore, the same set of operators that are used for manipulat-

ing data can also be used for manipulating programs. The result

is great economy of linguistic mechanism in combination with

powerful means of manipulating both code and data.

A final goal in the development of relational programming

has been the attempt to find a means of programming that permits

practical proofs of real programs. The fact that relations are

mathematically tractable, and that there is an well-developed

theory of relations, has encouraged this study.

2. Background

Relational programming has been based on naive set theory. This

is the set theory that most people are exposed to in every

mathematics class from freshman calculus on. It is hoped that by

basing this programming method on a simple and well-known

mathematical basis, it will be more understandable to people

without an extensive mathematical background.
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There are three sorts of objects with which relational pro-

grams deal:

* Individuals

* Sets

* Binary Relations

The individuals are the indivisible data values with which we

compute. Typically they will include integers, real numbers,

characters, and Boolean values. Both the sets and the relations

may be either finite or infinite; the latter being represented on

a finite computer using intensional methods (discussed later).

Both the sets and relations are typeless, which means that there

are no restrictions on what sets or relations can be members of

other sets and relations. Axiomatizations of set theory often

included intricate type systems (such as Russell's "Ramified Type

Theory") to prevent contradictions. However, as is discussed in

£32, there are other methods of preventing contradictions that do

not depend on elaborate type systems. Some of the factors that

have convinced us that a typeless system is more appropriate to

programming are discussed in [3].

We use the notation x1ES to mean that x is a member of the

set S, and xRy to mean that the pair <x,y> is a member of the

relation R. The functional notation Fx denotes the unique y (if

it exists) such that xFy. In general spaces and the case of

letters will be used to improve readability. Parentheses are

used for grouping in the usual way.
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3. Relations and Functions

3.1 Functionals

Since every function is a relation, every operation on relations

is also an operation on functions, i.e., a functional. In this

section we will investigate several relational operators and show

that they have useful functional interpretations.

The relative product operation on relations performs the

composition of functions. That is,

f.g (x) f(g(x))

We will sometimes also write this in its rightward form:

f;g (x) g(f(x))

The union operation, when applied to functions, combines them.

This is most useful when the functions have disjoint domains.

For example,

fCg (x) Jf(x), if x C dom f

fg(x), if x E dom g

(We write 'dom f' for the domain of f.)

If the functions do not have disjoint domains, the ordered

union, or overlaying operation, f/g, is often useful:

f/g (x) f(x), if x e dom f

g(x), otherwise

4- -



That is, the pairs in f supercede the corresponding pairs in g.

The converse of a relation, when applied to a function, pro-

duces the inverse function. That is,

x = f (y) iff y = f(x)

Notice that this operation is always defined since a relation

always has a converse. Of course, the inverse of a function will

be a function only if the original function was one-to-one.

Nevertheless, because the converse is always defined it satisfies

simpler properties.

The restrictions are useful operations on relations; they

define subrelations of the given relation whose members satisfy a

given property. When applied to functions, the restriction

operations limit the domain, range, or both the domain and range

of a function. They are defined:

y = s- f (x) iff y = f(x) and x Es

y f "s (x) iff y = f(x) and yEs

f<>S 3 -- S

where s is any set. As will be shown later, the restriction

operations are often useful for constructing conditionals.

The image operation, when applied to a function, gives the

image of a set under that function. This is defined:

img f (S) ={ Y xS: y f(x) }

-5-



The parallel application operation applies functions to

corresponding elements of a sequence:

flig (x,y) = (f x, g y)

The dual application or construction operation applies several

functions to one argument, returning a sequence of the results:

f#g (x) (f X, g x)

This is equivalent to Backus' construction operation, [f,g].

The closure operators effectively iterate the application of

a function. The transitive and non-transitive closures are

defined:

f f0  f1 :f 2

f + z .-2 P

where fn means the composition of f with itself n times. Thus

the result of f+(x) is whichever of f 1(x), f 2(x), ... are

defined. (If more than one are defined we can use the restric-

tion operations to pick the one we want.)

3.2 Control Structures

So far in the development of relational programming there has

been no need to intoduce control structures in the conventional

sense. This is because the relational operators are adequate to

express most control flow situations. For example, suppose we

wish to apply f(x) if x satisfies s and g(x) otherwise; this is

-6-



effectively a conditional construction. It can be written this

way using the relational operators:

s -- f /g

This is equivalent to

(s - f) : (non s --, g)

('non s' returns the complement of the set s.) In other words,

the domain of f is restricted to those things that do satisfy s

and the domain of g is restricted to those things that don't

satisfy s. This can be diagramed like this:

S

The s and 3 can be thought of as filters on the inputs of f and

g. Since they are mutually exclusive, it is guaranteed that at

most one value will be produced for each value put in.

The relational equivalent of loops are constructed from the

closure and restriction operators. Consider this function:

(s-f)
+
* <- non s

The application of s -f will be iterated one or more times,

which means that f will be applied one or more times, as long as
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its input satisfies s. An output from this process is allowed

only if it doesn't satisfy s. We can diagram this function:

s

This is the equivalent of a "repeat until" loop in Pascal. Simi-

lar expressions loop zero or more times, like a Pascal "while"

loop.

3.3 Relations Obey Simple Laws

One of the reasons we have investigated relational programming is

that it simplifies reasoning about programs. This is because

relations obey many simple laws. For example,

(f g) -1 -1 -• = g .f

is true for all relations; it is only true for functions that are

one-to-one.

3.4 Multiple-Valued Functions

A relation can be thought of as a multiple-valued function. That

is, there may be several y such that xFy. Functional approaches

to programming often exclude multiple-valued functions and non-

deterministic functions, even though these are often benign.

Relational programming deals naturally with multiple valued func-

tions. For example, suppose that g(x) is multiple-valued, e.g.,



there are three values, a, b, and c, such that xga, xgb, and xgc.

Further suppose that the function f has the same value, y, on

each of a, b, c. That is, y = f(a), y f(b), and y f(c).

Then it is perfectly meaningful to write

y f.g (x)

even though g is not single-valued at x. This can be visualized:

4. Relations and Data

4.1 Finite Functions

We will now turn to the representation of data by relations and

the high-level data manipulation functions provided by the rela-

tional operators. Although there are several ways that data can

be represented by relations, one of the simplest is by finite

functions, i.e., functions containing a finite number of pairs.

This representation is particularly suitable for arrays and

records. For example,

X Z A(i)

is the application of an array A to its index i. Similarly,

x = z(re)

is analogous to a field selection operation z.re, but in rela-
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tional terms it is also just the application of a function to an

argument.

The value of viewing data in this way is that it makes data

structures amenable to the relational operators. For example,

the converse operator inverts a structure.

i A (x)

returns the index of the array element whose value is x. If x
-1

occurs several times in A then A is multiple-valued. We can

get a set of all the indices where x occurs by taking the image:

img A -(x).

The relative product or composition operation can be used

for many purposes, such as permuting arrays. If P is a permuta-

tion function (a bijection from the index set into itself), then

A.P is the corresponding permutation of A. This operation can

also be used for "cascading" data structures. For example, if

'address' is a table such that

a = address(n)

means that a is the address of the variable named n, and 'value'

is a table such that

v value(a)

means that v is the value contained by location a, then

'value.address' is a cascaded table such that

- 10 -



v = value.address (n)

means that v is the value of the variable named n.

The restriction operation can be used to define substruc-

tures. For example, suppose that M is a finite function

representing a two-dimensional matrix:

x = M (ij)

That is, M is a function that takes pairs of integers into the

corresponding matrix elements. if I and J are index sets, the

submatrix of M corresponding to these index values is just

(IX J) -- ' ', since this restricts the first and second indices of

m to he in T and J respectively.

The union operation can be used to combine data structures.

For examole, if S and T are tables, then ST is a table that con-

tains the entries of both S and T. Also, if U and V are two

arrays with consecutive index sets (which is not hard to

arrange), then UIPV is the catenation of U and V.

The overlaying operation U/V updates an array V according to

the oairs in U That is, if U/IV(i) U() if r!(i) is defined,

and I/11(i) = 17(t) otherwise.

vinaJlv, the image operation can be used for mass selec-

tions. Fir examale, if A is an array and S is a set of indices,

then ime A (S) is the set of all elements of A selected by

indices in S.
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4.2 Sequences

Sequences and lists have a straight-forward representation as

relations. If we draw the sequence of elements (a,b,c,d) like

this:

S a c d

then you can see that this can be represented by the relation xSy

that relates x to y just when there is an arrow from x to y.

That is,

S { a,b>, <b,c>, <c,d> }

Next we consider the effect of the relational operators on such a

sequence.

The converse of S is that relation S where yS x if and

only if xSy. The effect is to reverse the arrows:

a b c d

so it can be seen that S is just the reverse of S.

Like all relations, a sequence can be thought of as a func-

tion. The effect of functional application is to follow an arrow

from one element of the sequence to another, e.g.,

c S(b) and b S (c)

Of course, S2 goes two links:
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d S2 (b) and b S'(d)

and so forth.

The restriction operation can be used to define subsequences

of a given sequence. For example, S<>P defines the subsequence

of S all of whose elements satisfy the predicate P. That is, if

P is the set of positive numbers, then this restriction has just

the positive members of S.

The union operation can be used in various ways to combine

sequences. For example, to catenate the sequences S and T we can

write

S (last S, first T) T

This combines S and T with a third relation which is a sequence

from the last element of S to the first element of T.

Finally, we can use the domain functions to find dis-

tinguished elements of a sequence. For example, the initial

members of a sequence (of which there is exactly one) are those

members that have an arrow leaving them, but not pointing at

them. In other words the initial members are the elements of the

domain that are not in the range:

init(S) dom(S) dom(S-1)

4.3 General Data Structures

Since the manipulation of non-linear data structures was a major
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reason for investigating relations, we would expect to find that

the relational operators are useful. The same approach is used

as for sequences. For example, the graph

T b

d I

is represented by the relation

T = {<a,b>, <a,c>, <b,d>, <b,e>, <c,e>, <c,f>, <c,c>}

Then, it is easy to see that the roots of this structure are just

its initial members, init(T), and the leaves are the initial

members of the converse relation, init(T-). The latter are

usually called terminal members.

Notice that T(n) follows an arrow from node n, which may be

multiple-valued. For example, T(b) could be d or e. Therefore,

it is better to ask for all the descendents of a node n, which is

just the image of T applied to n:

descendents(T) img T (n)

5. Higher Levels of Abstraction

The relational programming style is open ended and easily admits

even higher levels of abstraction. Observe that the relational

-14 -



operators are themselves functions (in particular, functionals).

Therefore, these functions can be manipulated and combined by the

relational operators. Therefore, higher level operators can be

built without the use of a "formal" (i.e., data basea) represen-

tation, such as that used in LISP or Backus's FFP system [1].

This is a natural outgrowth of the fact that relational program-

ming deals with a single kind of entities, relations, and uses

them for all purposes. Second and higher level functionals have

not been seriously investigated yet, although they seem to arise

naturally from the attempt to eliminate variables.

6. Status

In this section we summarize the current status of our investiga-

tion into relational programming.

The operators are undergoing a continuing refinement. We

began with the operators defined by Russell and Whitehead [7] and

Carnap [2]. As the requirements of using a relational calculus

for programming have emerged, we have modified the meaning of

several of their operators, dropped some, and added others.

The notation is undergoing a continuing evolution, as is

apparent in any comparison with our earlier reports (4, 5). The

notation used in this paper is more in conformity with mathemati-

cal custom and is easier to read and type. We anticipate that

this evolution will continue; it would be premature to freeze it

at this time.

- 15 -



In an attempt to better access the value of relational pro-

gramming, we have begun the implementation of several trial

applications. One of these is a table-driven syntax-directed-

editor and generator of the type described in [6]. The resulting

relational program is about a page long. It will be described in

a future technical report.

We have consciously avoided allowing implementation con-

siderations to influence the early development of relational pro-

gramming. This is because we did not want to prejudice the study

by particular assumptions about machine architecture. Rather, we

have hoped that the investigation of relational programming will

guide us to the machines we should be building. Recently, how-

ever, we have begun the investigation of some possible represen-

tations of relations along with an analysis of the complexity of

the corresponding algorithms. This will be reported in a forth-

coming thesis from the Naval Postgraduate School.

We have been attempting the practical proof of some rela-

tional programs. This simple properties which relations satisfy

makes this a feasible undertaking.

Finally, we have begun the implementation of simple exten-

sional and intensional representations and implementations of the

relational operators. The goal here is to provide a system to

allow "hands-on" experience with relational programming. This is

a necessary part of the evaluation of any new programming style.
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APPENDIX: RELATIONAL CALCULUS - REVISED NOTATION
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Old Notation Name New Notation

xGC class membership x EC

xC

xRy relation membership xRy

F:x function application F x

R- converse R"

I:R "v inv R

lem:R domain dom R

Lm: R " "

rim:R codomain dom.inv R

Rm:R

mem:R members mem R

R! image img R

i:x unit class un x

e:C unit class selector the C

R unit image unimg R

R unit coimage unimg.inv R

RMS right restriction R<-S

S R left restriction S -, R

RAS restriction R<>S

R A S intersection R&S

R V S union RIS

R-S difference R-S

-R complement non R

x+y addition x+y

x-y subtraction x-y
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xmy multiplication x*y

x/y division x%y

1 empty class

T full class all, non 6

C#D Cartesian product C XD

R.S relative product R;S

RS functional composition R.S, R'S

-, I identity -, Id

init:R initial members init R

term:R terminal members init.inv R

:R first member first R

w:R last member first.inv R

:R final members final R

A:R initial members inv.final.inv R

min:C minimum min C

max:C maximum max C

x,y pair x:y

#:C size size C
-1

Curry:C Curry graph C

Curry -:R graph graph R

parallel application rls

construction r#s

(i) binary operator (ff)-

(xw) left binding (xw)

(wY) right binding (fny)

0
R reflexive trans. closure R , retrac R
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R+  transitive closure R+ , trac R

Rn  relation power Rn

f::g meta-application f::g

fRf- 1  isomorphic image f$R

Md:(g,f) overlaying f/g

RCS subset RGS

R -S " RQS

empty relation 6X6

full relation allX all

m..n closed interval (unimg >) m & (unimg <) n

CXD cross product graph(CXD)

( ..'Y: explicit relation (a:b y:z)

sat catenate s't

<a,b,...,z> sequence (a,b,...,z)

f@i reduction M

Note! The major difference between the new and old notations is

that y:Fx now means xFy, whereas previously it meant yFx. This

means that separate operators are now needed for relative pro-

duct and composition. These are related by R.S = S;R. This

effects the interpretation of several other relations and

classes. For example, functions are now the right-univalent

(run) relations, whereas previously they were the left-univalent

(lun) relations. Also, the domain of a function is its left

members, rather than its right members.
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